Docking Study Timeline

- **Budget Proviso**: May 2019
- **Bid Event**: June 2019
- **Contract with Clark Huesemann**: July 2019
- **Study Published**: January 2020
Report- Approach

Considerations
- Program Fit & Compatibility
- Architectural/Site
- Historical
- Energy/ MEP
- Structural
- Code Compliance
- Demolition & Logistics
- Hazardous Materials

Communication Plan
- Department of Administration
- Joint Building Committee Members
- KDHE Administration and Laboratory Director
- Kansas Historical Society- Jennie Chinn, Patrick Zollner
- Human Resources Management and Training
- Docking Building Facilities Managers
- Capital Police- Captain Amber Harrington

Exploring options
- Plan for reuse and restoration of entire Docking Building
- Reduce the building size and reuse a portion of the existing
Building Functions/Program

Existing functions to stay
- Central Power Plant
- Campus Facility Maintenance Operations
- Central Warehouse
- Capitol Police

New functions to be accommodated
- Compatible State Agencies
- Health Clinic and other State Service Agencies
- Training/Meeting Center
- Grab and Go
- Interactive State Exhibit Commons
- Shared Conference/Teleconference Rooms
- Wellness Support Rooms
- Outdoor Event Space
- Additional Dedicated Capitol Police Parking
- KDHE Laboratories
Urban Laboratories

STATE OF MISSOURI PUBLIC HEALTH LABORATORY
JEFFERSON CITY, MO
- Taller than adjacent buildings
- BSL-3 Lab (13,200 SF)
- 117,400 SF
- Wind modeling study performed

J. MEHSEN JOSEPH PUBLIC HEALTH LABORATORY
BALTIMORE, MD
- A catalyst for Urban Revitalization
- 234,000 SF
- BSL2 & BSL-3 Laboratory
- 212 employees – six divisions
- 10 million tests annually
- Gallery, training space, & public functions on main floor
- Wind modeling study

NATIONAL EMERGING INFECTIOUS DISEASES LABORATORY
BOSTON, MA
- BSL-2, BSL-3 and BSL-4 Laboratory in the heart of Boston (Ebola and Marburg)
- Seven-stories; 192,000 SF
- Designed in accordance with Level 5 NIH Security Guidelines
- Robust public outreach – over 200 tours to public officials, media and community members
- Wind modeling study

SMILOW RESEARCH CENTER
NEW YORK, NY
- Dedicated to translations research (BSL-2 & BSL-3)
- 230,000 SF
- 13-story
- 40 research teams
- Wind modeling study
Alternatives Studied
Proposed Options

Option A
utilize entire building & renovate

Option A + KDHE Labs

Option B
utilize first 3 floors & add 3 floors

Option B + KDHE Labs
Option A

Utilize Entire Building & Renovate
Option A Characteristics

Program Fit & Compatibility: Provides needed space for state agencies. Allows for centralization and consolidation of currently separated agencies and in doing so capitalizes on efficiencies.

Architectural/Site: The full renovation and modernization of this existing building represents an efficient use of State resources. Renovation costs are less than the cost of new construction.

Historical: Rehabilitation of this distinctive historic building preserves a resource that is unique to the state of Kansas.

Energy/MEP: The upgrades to the building infrastructure significantly improve energy performance, capitalizing on the existing central plant, and saving energy and operational costs into the future. The renovated building’s energy performance would rank within the top 3% of similar buildings that are located within the Topeka area.

Structural: The building’s structure is in good condition and requires minimal change to accommodate the proposed solutions.

Code Compliance: The renovation will bring the building up to current fire, life safety, energy, and accessibility codes.

Demolition & Logistics: The renovation uses conventional demolition techniques for replacement and upgrading of exterior skin and selective demolition of interior elements. A key component of the demolition includes recycling of many materials.

Hazardous Materials: Some of the building’s aging components have been identified to contain hazardous materials which are planned to be removed and disposed of properly as a part of the renovation.

Schedule: Design, documentation, and construction is estimated to take 30 months.
Option A
Utilize Entire Building & Renovate
Option A + KDHE Labs
Utilize Entire Building & Renovate
Program Fit & Compatibility: Provides needed space for state agencies. Allows for centralization and consolidation of currently separated agencies and in doing so capitalizes on efficiencies. With the KDHE Laboratories included, a renovated Docking will provide a safe and secure facility for the Laboratories and will place the agency in a location that addresses their recruitment and retention goals.

Architectural/Site: The full renovation and modernization of this existing building represents an efficient use of State resources. Renovation costs are less than the cost of new construction.

Historical: Rehabilitation of this distinctive historic building preserves a resource that is unique to the state of Kansas.

Energy/MEP: The upgrades to the building infrastructure significantly improve energy performance, capitalizing on the existing central plant, and saving energy and operational costs into the future. The renovated building’s energy performance would rank within the top 3% of similar buildings that are located within the Topeka area.

Structural: The building’s structure is in good condition and requires minimal change to accommodate the proposed solutions. Minor modifications to structure to address vibration and floor loading to accommodate the KDHE Laboratories are included.

Code Compliance: The renovation will bring the building up to current fire, life safety, energy, and accessibility codes.

Demolition & Logistics: The renovation uses conventional demolition techniques for replacement and upgrading of exterior skin and selective demolition of interior elements. A key component of the demolition includes recycling of many materials.

Hazardous Materials: Some of the building’s aging components have been identified to contain hazardous materials which are planned to be removed and disposed of properly as a part of the renovation.

Schedule: Design, documentation, and construction is estimated to take 36 months.
Option A + KDHE Labs
Utilize Entire Building & Renovate
Option A + KDHE Labs
Utilize Entire Building & Renovate
Option B

Utilize First 3 Floors & Add 3 Floors
Option B Characteristics

Program Fit & Compatibility: Provides needed space for state agencies. Allows for centralization and consolidation of currently separated agencies and in doing so capitalizes on efficiencies.

Architectural/Site: Reuses portions of the existing building that are the most compatible with the intended uses and replaces a portion of the building with new construction. As a combination of renovated and new square footage, this solution is less costly than new construction.

Historical: Historical elements in the renovated portions of the building will be preserved, and other elements will be salvaged from the building and used in display and documentation.

Energy/MEP: The upgrades to the building infrastructure significantly improve energy performance, capitalizing on the existing central plant, and saving energy and operational costs into the future. The renovated building’s energy performance would rank within the top 3% of similar buildings that are located within the Topeka area.

Structural: Utilizes remaining existing structure that is sound and can be reused. New portions of the building capitalize on the larger spans and flexibility of new structure allowing for more efficient agency layouts.

Code Compliance: The renovation will bring the building up to current fire, life safety, energy, and accessibility codes.

Demolition & Logistics: Uses safe and specialized demolition techniques to dismantle a large portion of the existing building. The removal and remaining selective demolition will incorporate recycling of many materials.

Hazardous Materials: Some of the building’s aging components have been identified to contain hazardous materials which are planned to be removed and disposed of properly as a part of the renovation.

Schedule: Design, documentation, and construction is estimated to take 42 months.
Option B

Utilize First 3 Floors & Add 3 Floors
Option B

Utilize First 3 Floors & Add 3 Floors

NET SQUARE FOOTAGES:
- CAPITOL POLICE: 6,940
- GRAB & GO: 1,187
- STATE AGENCY: 188,527
- TRAINING/MEETING: 20,758
- TOTAL NSF: 217,412
Option B + KDHE Labs
Utilize First 3 Floors & Add 3 Floors
Option B+KDHE Labs Characteristics

Program Fit & Compatibility: Provides needed space for state agencies. Allows for centralization and consolidation of currently separated agencies and in doing so capitalizes on efficiencies. With the KDHE Laboratories included, a renovated Docking will provide a safe and secure facility for the Laboratories and will place the agency in a location that addresses their recruitment and retention goals.

Architectural/Site: Reuses portions of the existing building that are the most compatible with the intended uses and replaces a portion of the building with new construction. As a combination of renovated and new square footage, this solution is less costly than new construction.

Historical: Historical elements in the renovated portions of the building will be preserved, and other elements will be salvaged from the building and used in display and documentation.

Energy/MEP: The upgrades to the building infrastructure significantly improve energy performance, capitalizing on the existing central plant, and saving energy and operational costs into the future. The renovated building’s energy performance would rank within the top 3% of similar buildings that are located within the Topeka area.

Structural: Utilizes remaining existing structure that is sound and can be reused. New portions of the building capitalize on the larger spans and flexibility of new structure allowing for more efficient agency and laboratory layouts.

Code Compliance: The renovation will bring the building up to current fire, life safety, energy, and accessibility codes.

Demolition & Logistics: Uses safe and specialized demolition techniques to dismantle a large portion of the existing building. The removal and remaining selective demolition will incorporate recycling of many materials.

Hazardous Materials: Some of the building’s aging components have been identified to contain hazardous materials which are planned to be removed and disposed of properly as a part of the renovation.

Schedule: Design, documentation, and construction is estimated to 43 months.
Option B + KDHE Labs
Utilize First 3 Floors & Add 3 Floors
Design and Construction Schedule

OPTION A
- Notice to Proceed
- Program confirmation
- Design
- Review/bidding/award
- Mobilization
- Haz mat/demolition
- Construction
- Move in/commissioning
- Occupancy

OPTION B
- Notice to Proceed
- Program confirmation
- Design
- Review/bidding/award
- Mobilization
- Haz mat/demolition
- Construction
- Move in/commissioning
- Occupancy

Alternate schedule with addition of KDHE

2020
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 months</td>
<td>5 months</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 months</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2021
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2022
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2023
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

2024
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>A (full renovation)</th>
<th>A+Lab (full renovation)</th>
<th>B (renovation/addition)</th>
<th>B+Lab (renovation/addition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Space Provided</td>
<td>532,592 GSF</td>
<td>532,592 GSF</td>
<td>364,038 GSF</td>
<td>364,038 GSF</td>
</tr>
<tr>
<td>Construction Cost</td>
<td>$84,616,404</td>
<td>$114,981,261</td>
<td>$74,287,114</td>
<td>$103,728,082</td>
</tr>
<tr>
<td>Construction Cost Per Square Foot</td>
<td>$158.88</td>
<td>$215.89</td>
<td>$204.06</td>
<td>$284.94</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$114,142,834</td>
<td>$154,556,516</td>
<td>$100,306,092</td>
<td>$139,504,097</td>
</tr>
<tr>
<td>Brings All Space Up To Current Codes</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Removes All Hazardous Materials</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Provides Contemporary Office Work Space</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Allows for Consolidation of Agencies</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Provides Flexibility in Housing State Agencies</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Reuses State Resource</td>
<td>+</td>
<td>+</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Rehabilitates a Historic Resource</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Showcases Historic Building Features</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Provides Safety and Security</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Requires Less Operational Costs</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Capitalizes on Central Plant</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Delivers Sustainable Design</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Provides Significant Energy Efficiency</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
– Building Safety and Infrastructure

– Employee Recruitment and Retention

– Efficiency and Workflow

– Construction Costs and Soft/Equipment Costs
N. Myron Gunsalus, Jr., M.S.
Director
Kansas Health and Environmental Laboratories

Myron.Gunsalus@ks.gov
785-296-0801

Thank you!
REPORT SCHEDULE

<table>
<thead>
<tr>
<th>Selection</th>
<th>Startup</th>
<th>Programming</th>
<th>Concept Design</th>
<th>Recommendations</th>
<th>Report Finalization</th>
<th>Committee Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 13 20 27</td>
<td>3 10 17 24</td>
<td>1 8 15 22 29</td>
<td>5 12 19 26</td>
<td>2 9 16 23 30</td>
<td>7 14 21 28</td>
<td>4 11 18 26</td>
</tr>
</tbody>
</table>
FACILITY SPACE IMPROVEMENTS

1. Efficient Workflow
2. Co-location of Customer Services
3. Combined Core Laboratory
4. Personnel Safety and Visibility
5. Modernized Infectious Disease Laboratory
6. Improved Utilization

<table>
<thead>
<tr>
<th>Department</th>
<th>Current NSF</th>
<th>Future NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving + Accessioning</td>
<td>12,531</td>
<td>8,730</td>
</tr>
<tr>
<td>Laboratory</td>
<td>28,828</td>
<td>28,133</td>
</tr>
<tr>
<td>Offices + Shared Support</td>
<td>17,745</td>
<td>20,510</td>
</tr>
<tr>
<td>Building Support</td>
<td>5,369</td>
<td>3,645</td>
</tr>
<tr>
<td>Total</td>
<td>64,473</td>
<td>61,018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current - 2019</th>
<th>Future</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>28,828 Lab NSF</td>
<td>28,133 Lab NSF</td>
<td>(695)</td>
</tr>
<tr>
<td>35,645 Non-Lab NSF</td>
<td>32,885 Non-Lab NSF</td>
<td>(2,760)</td>
</tr>
<tr>
<td>120,443 GSF</td>
<td>100,029 GSF</td>
<td>(20,414)</td>
</tr>
<tr>
<td>53.53% Net-to-Gross</td>
<td>61% Net-to-Gross</td>
<td>7.47%</td>
</tr>
<tr>
<td>69 Staff</td>
<td>85 Staff</td>
<td>16 Staff</td>
</tr>
</tbody>
</table>
PROPOSED SITE LOCATIONS

DOWNTOWN SITE

KNI SITE

FORBES SITE
DOWNTOWN SITE CONTEXT
DOWNTOWN SITE PLAN

1. Public Parking
2. EV Parking
3. EPA Trailer Parking
4. Dock
5. Back-up Generator
6. Sample Drop-off Parking
7. Sample Drop-off Drive-up
8. Employee Parking
9. Bioswales
KNI SITE CONTEXT
KNI SITE PLAN

1. Public Parking
2. EV Parking
3. EPA Trailer Parking
4. Dock
5. Back-up Generator
6. Sample Drop-off Parking
7. Sample Drop-off Drive-up
8. Pond
9. Employee Parking
10. Bioswales
FORBES SITE CONTEXT
FORBES SITE PLAN

1. Public Parking
2. EV Parking
3. EPA Trailer Parking
4. Dock
5. Back-up Generator
6. Sample Drop-off Parking
7. Sample Drop-off Drive-up
8. Employee Parking
9. Bioswales
CONCEPT IMAGERY

Slate

Wood

Limestone

Glazing
ENERGY MODEL

EUI in kBTU/SF/YR
Existing KDHE Lab: 215
ASHRAE 90.1 Baseline: 123
Current Design: 104
Optimized Design: 99.7

ENERGY COST per year
Existing KDHE Lab: $272,127
ASHRAE 90.1 Baseline: $256,053
Current Design: $227,740
Optimized Design: $217,916

Current Design results in approximately $50,000 yearly energy savings
SUSTAINABLE DESIGN

PASSIVE DESIGN STRATEGIES
- Solar controls – sun shading devices, low-e glazing
- Building orientation on site
- Daylight harvesting
- Natural ventilation
- High-albedo roof

ACTIVE SUSTAINABLE DESIGN
- High-efficiency mechanical and electrical systems
- Energy recovery system
- Providing water-efficient plumbing fixtures to reduce building water usage by 30%
- Provide energy-recovery practices to increase energy performance by 40%
- Purchase energy efficient freezers
- Provide LED lighting throughout the facility
- Utilize task lights
- Direct/Indirect lighting
- Provide lighting controls (occupancy/vacancy sensors)
- Grouping labs with similar functions near each other to centralize use of common lab equipment - Process cooling water for heat rejection
- Active laboratory air quality management system (Aircuity)
- Active chilled beams in the non-lab spaces
- Separate AHU for lab and non-lab
- Variable speed chillers
- VAV fume hoods with reduced face velocity
- Displacement ventilation

RENEWABLE ENERGY SYSTEMS
- PV panels on roof and parking
- Solar water preheat
- Wind generator
- Ground source heat pumps
SUSTAINABLE DESIGN

BUILDING MATERIALS + FINISHES
- Utilize sustainable building elements that have a 50+ year lifespan
 - Slate
 - Terracotta
 - Stone
- Low VOC paints and finishes
- Utilize FSC certified wood that is responsibly harvested
- Recycled metal for the lab casework

STORMWATER MANAGEMENT
- Pervious pavements
- Bioswales
- Retention pond
- Stormwater collection from roofs + horizontal surfaces
- Green roof (sedum)
- Stormwater collection tank below grade

NATIVE LANDSCAPING
- Water efficient landscaping
- Trees to shade parking and roofs
- Views to nature
- Public greenspace with native vegetation

TRANSPORT SYSTEMS
- Provide bike parking spaces
- Electric vehicle charging stations
- Carpool parking
- Shower + changing facilities
- Locate on public transportation lines
COST MODEL

<table>
<thead>
<tr>
<th>Site</th>
<th>NSF</th>
<th>GSF</th>
<th>$ / GSF</th>
<th>Construction Cost</th>
<th>Total Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOWNTOWN SITE</td>
<td>61,018</td>
<td>100,029</td>
<td>$418</td>
<td>$41,686,485</td>
<td>$56,276,755</td>
</tr>
<tr>
<td>KNI SITE</td>
<td>61,018</td>
<td>100,029</td>
<td>$429</td>
<td>$42,786,485</td>
<td>$57,761,755</td>
</tr>
<tr>
<td>FORBES SITE</td>
<td>60,918</td>
<td>98,255</td>
<td>$425</td>
<td>$41,592,510</td>
<td>$56,149,888</td>
</tr>
</tbody>
</table>

Costs are based on anticipated project schedule

$125,000 per month escalation factor
Project Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
<th>Date</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming</td>
<td>2 Mo.</td>
<td>8/1/19 - 10/1/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept Design</td>
<td>2 Mo.</td>
<td>10/1/19 - 12/1/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>1.5 Mo.</td>
<td>12/1/19 - 1/15/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notice to Proceed</td>
<td></td>
<td>7/1/2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>8 Mo.</td>
<td>7/1/20 - 2/28/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Manager Selection</td>
<td></td>
<td>8/1/2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMP Development</td>
<td>1.5 Mo.</td>
<td>11/1/20 - 12/15/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>20 Mo.</td>
<td>12/15/20 - 8/15/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Move-In + Installation</td>
<td>1.5 Mo.</td>
<td>8/15/22 - 10/1/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning + Certification</td>
<td>1 Mo.</td>
<td>10/1/22 - 11/1/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupancy</td>
<td>0.5 Mo.</td>
<td>11/1/22 - 11/15/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Design
- Construction